
introduction to modern c++
Lecture / Lab 6

Rémi Géraud
March 17, 2016

École Normale Supérieure de Paris



easter egg!

• QEM/MMEF: We need 1 additional Lab session (because Easter)
• Everybody: We need 1 additional Lecture (because 1st session)

2



Lecture / Lab 6
A short review, the Path Onward,

and some Machine Learning.

3



what you know now

• Basic program structure
• Variables and types
• Algorithms, branches, loops
• A few things about memory
• Object oriented design

And you experimented it on

• BBP-type computation of π
• Black-Scholes European call option pricing
• Euler integration of ODEs for ballistics
• Monte-Carlo integration of the n-dimensional sphere
• Portfolio evaluation in the geometric Brownian motion model
• Markov chain evolution of credit risk rating

4



what you know now

• Basic program structure
• Variables and types
• Algorithms, branches, loops
• A few things about memory
• Object oriented design

And you experimented it on

• BBP-type computation of π
• Black-Scholes European call option pricing
• Euler integration of ODEs for ballistics
• Monte-Carlo integration of the n-dimensional sphere
• Portfolio evaluation in the geometric Brownian motion model
• Markov chain evolution of credit risk rating

4



from now on

From now on we will focus more on specific applications:

• Graphics and multimedia
• Machine learning
• Networking
• Simulation and scientific computation
• Multithreading
• User interfaces

5



also, the final project

Remember you should do a final project to validate this course

• Select a topic
• Write a brief project plan which has to be approved
• Do the project
• Make a presentation + demo
• Provide all source code to me.

In teams of 3-5 students.

6



teasers: 3d graphics

7



teasers: computer vision

8



teasers: scientific simulation

9



teasers: user interfaces

10



teasers: how?

You can achieve this kind of things by using:

• Advanced C++ features (threading, sockets, STL...)
• 3rd-party libraries (SDL, Qt, OpenGL, OpenCV...)

And most probably a combination of both.

We will do slightly simpler versions of these (e.g. Angry birds) but
you will have all you need.

Hint: Good design is key. The rest is ”just” work.

11



the perceptron



the perceptron

The perceptron is one of the first historic machine learning
algorithms. It is a classifier (like SVMs, naïve Bayes, etc.)

Goal: Find a line that separates (+) from (−). Why?

13



the perceptron

Recall that the equation of a line is: y = ax+ b.

• y > ax+ b means we are above the line
• y < ax+ b means we are under the line

If we are given a new point (x, y) we can say whether it is above or
under the line, i.e. we can classify it automatically.

The perceptron algorithm tells us the line equation that we need.

14



the perceptron algorithm

We need the following ingredients:

• Training samples X =

x⃗1 =
x1y1
1

 , . . . , x⃗n


• Answers for them T⃗ = (t1, . . . , tn) (each ti is -1 or +1)

We are looking for a vector of weights W⃗ = (w1,w2,w3) such that

For each x⃗i in X, sign(W⃗ · x⃗i) = ti

Question: Why 3D vectors with a component set to 1?

Central idea of the perceptron: Look at samples one after the other
and update weights as we go.

15



the perceptron algorithm

I. Learning phase:

1. Initialise X, T⃗, and set W⃗ = 0.
2. For each training sample x⃗i:

(i) Compute the “prediction” u = sign(W⃗ · x⃗i)
(ii) If u ̸= ti, update the weights:

W⃗← W⃗+ λ(ti − u)⃗xi

Here, λ > 0 is a small parameter.

II. Once trained,

• Input: Some sample x⃗.
• Output: sign(W⃗ · x⃗).

16



the perceptron algorithm

Task:

• Create a class Vector3D and functions dot, mul and add
• (Bonus challenge: Do that with operator+ and operator*)
• Implement the Perceptron algorithm
• Test it. What are some limitations?

Bonus question: Find the best value of λ.

Bonus question: Can you think of another approach to classify data?

Bonus question: Generalise the perceptron algorithm to n-D vectors.

17



Questions?

18



hint

class Vector3D {
public:
double x, y, z;
Vector3D(double x, double y, double z) : // Constructor

x(x), y(y), z(z) // Init list
{};

// Addition of two vectors
Vector3D operator+(const Vector3D& other) const;
// Multiplication of a vector by a scalar
Vector3D operator*(const double& other) const;
// Dot product between two vectors
double operator*(const Vector3D& other) const;

};

int main() {
Vector3D v {1, 2, 3};
// ...

}

19


	The Perceptron

