
introduction to modern c++
Lecture 5

Rémi Géraud
February 25, 2016

École Normale Supérieure de Paris

Lecture 5
Structs/Classes: Members, Inheritance,

and the Rule of 3/0/5

2

a word of caution

We are now entering the world of classes.

We’ll stay there for some time.

Then we’ll leave for a better place.

3

table of contents

1. Structs and members

2. Public and Private Parts

3. Inheritance

4. Object-Oriented Programming

5. Constructors & Destructors

4

structs and members

structs

In last week’s lab, we encountered compound types such as
structs.
int main() {

struct Point2D {
double x; // First field
double y; // Second field

};

Point2D v {4, 7};

std::cout << ”v = (”
<< v.x
<< ”, ”
<< v.y
<< ”)”
<< std::endl;

}
6

structs as special-purpose types: fields

Structs are very practical ways to create special-purpose types,
e.g.:

• Mario (fields: position, score, etc.)
• Koopa (fields: health, level, etc.)
• Sky (fields: color, position, etc.)

or, closer to earth,

• Option (fields: price, volatility, quantity, etc.)
• Country (fields: population, GDP, name, etc.)

7

struct methods

In fact, we can do more. Here’s an example:

int main () {
struct Point2D {

double x, y; // Fields

double Norm2() { // Norm2 method
return x*x + y*y;

};
};

Point2D v {10, 2};
Point2D w {3, 4};

std::cout << ”||v||^2 = ” << v.Norm2() << std::endl;
std::cout << ”||w||^2 = ” << w.Norm2() << std::endl;

}

8

struct fields and methods: members

General rule of thumbs:

• Fields = Properties
• Methods = Responsibilities

Example: struct Mario

• Fields: position, score, etc.
• Methods: move, jump, die, grow, etc.

9

public and private parts

structs are public by default

By default,

• All the fields of a struct can be read and modified,
• All the methods of a struct can be called,

by anyone (i.e. any part of the program).

Sometimes, you don’t want that: IP, correctness, etc.

11

classes are private by default

We can use class instead of struct. By default,

• Only the class itself can read or modify its fields,
• Only the class itself can call its methods.

and no one else (unless explicitly specified)

Classes and structs are otherwise equivalent. But in practice, almost
everyone uses classes.

12

Here is a typical C++ class example:

class Square {
double x, y, w, h; // Private
double area, perimeter; // Private

public: // Everything that follows is public
double getArea() { ... };
double getPerimeter() { ... };
double resize(double newW, double newH) { ... };

}

13

classes and header files

For the sake of clarity, it is better to separate the class definition
from its implementation. To that end we use header files. Example:
// File: Point2D.h
class Point2D {

public:
double x, y;
double Norm2();

};

// File: Point2D.cpp
double Point2D::Norm2() {

return x*x + y*y;
}

This makes it easier to separate specification from implementation.
To use the class Point2D you must add #include ”Point2D.h” to
your program.

14

inheritance

inheritance: main idea

There is not much difference between a square and a rectangle. Is
there a way to avoid coding the same things twice?

Yes: Inheritance.

16

inheritance: copying everything from your parents

class Rectangle {
public:

double x, y, w, h;
double getArea();

};

class Square : public Rectangle {
// All public fields are copied from Rectangle
// All public methods are copied from Rectangle

};

We say that Square is a “child” of Rectangle. Or that Rectangle
is a “parent” of Square.

17

inheritance: protected members

What about private fields and methods? Those don’t get copied.
But we can share something within a family by using protected:
class Rectangle {

protected:
double x, y, w, h;

public:
double getArea();

};

class Square : public Rectangle { };

Square will have access to x, y, w, h. But someone who isn’t
part of the family will not have access.

18

hiding inheritance

Inheritance can be embraced or denied:

class Shape1 : public Rectangle { ... }; // Recognized
class Shape2 : protected Rectangle { ... }; // Family secret
class Shape3 : private Rectangle { ... }; // Unrecognized

By default, inheritance of classes is private.

19

object-oriented programming

object-oriented programming

OOP is a software design paradigm developed in the 1970’s.

Main ideas:

• Construct objects (= classes)
• Specify their properties (= fields), responsibilities (= methods),
and visibility (= private/public)

• Use dependencies (= inheritance) to avoid rewriting code

Main goals:

• Separation of concerns (= team work)
• Encapsulation (= how I work is not your business).

21

example: platform game class diagram

22

oop: the good, the bad, and the ugly

• The Good: Fast development, easy teamwork, easy to learn
• The Bad: multithreading, resource management
• The Ugly: ...

23

example: violating the liskov substitution principle

• Create a class Ellipse. Create a class Circle.
• A circle “is an” ellipse, therefore Circle inherits from Ellipse.
• Assume that Ellipse has a stretchX method.
• This method is inherited by Circle.
• But if we use stretchX on a Circle, it is no longer a circle...

Bottom line:

An OO-model of a circle should not be
a sort of OO-model of an ellipse

24

constructors & destructors

initialisation: constructors

If we want a class to be initialised in some way, we can use a
special method called a constructor.
class Point2D {

double x, y;
public:

Point2D(double newX, double newY); // Constructor
};

Point2D::Point2D (double newX, double newY) {
x = newX;
y = newY;

}

int main() {
Point2D myPoint (27, 35);
...

}
26

initialisation: constructors

You can have several constructors, as long as they don’t overlap.
Most useful ones are:

• Default constructor;
• Copy constructor — necessary for complicated classes;
• Move constructor — if you want to move without copying.

27

cleaning-up: destructors

A class should clean after itself. The cleaning-up code is taken care
of in a destructor:

class MyStorage {
...
public:

MyStorage(...); // Constructor: Opens a file
~MyStorage(); // Destructor: Closes the file

};

Important: Any resources acquired during creation should be freed
upon destruction.

28

the rule of 3 (or 0 or 5)

You should use only one of these combinations:

0 No destructor, copy or move constructor, no assignment
operator;

3 Destructor, copy constructor and copy assignment operator;
3 Destructor, move constructor and move assignment operator;
5 Destructor, copy and move constructors, copy and move
assignment operators.

Remember:

Respect the rule of 3 (or 0 or 5).

If you don’t, your program might behave unexpectedly.

29

Questions?

30

Lab Session
Const, Virtual, and Move Semantics

31

	Structs and members
	Public and Private Parts
	Inheritance
	Object-Oriented Programming
	Constructors & Destructors

