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Lecture 5
Structs/Classes: Members, Inheritance,

and the Rule of 3/0/5
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a word of caution

We are now entering the world of classes.

We’ll stay there for some time.

Then we’ll leave for a better place.
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structs and members



structs

In last week’s lab, we encountered compound types such as
structs.
int main() {

struct Point2D {
double x; // First field
double y; // Second field

};

Point2D v {4, 7};

std::cout << ”v = (”
<< v.x
<< ”, ”
<< v.y
<< ”)”
<< std::endl;

}
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structs as special-purpose types: fields

Structs are very practical ways to create special-purpose types,
e.g.:

• Mario (fields: position, score, etc.)
• Koopa (fields: health, level, etc.)
• Sky (fields: color, position, etc.)

or, closer to earth,

• Option (fields: price, volatility, quantity, etc.)
• Country (fields: population, GDP, name, etc.)
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struct methods

In fact, we can do more. Here’s an example:

int main () {
struct Point2D {

double x, y; // Fields

double Norm2() { // Norm2 method
return x*x + y*y;

};
};

Point2D v {10, 2};
Point2D w {3, 4};

std::cout << ”||v||^2 = ” << v.Norm2() << std::endl;
std::cout << ”||w||^2 = ” << w.Norm2() << std::endl;

}
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struct fields and methods: members

General rule of thumbs:

• Fields = Properties
• Methods = Responsibilities

Example: struct Mario

• Fields: position, score, etc.
• Methods: move, jump, die, grow, etc.

9



public and private parts



structs are public by default

By default,

• All the fields of a struct can be read and modified,
• All the methods of a struct can be called,

by anyone (i.e. any part of the program).

Sometimes, you don’t want that: IP, correctness, etc.
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classes are private by default

We can use class instead of struct. By default,

• Only the class itself can read or modify its fields,
• Only the class itself can call its methods.

and no one else (unless explicitly specified)

Classes and structs are otherwise equivalent. But in practice, almost
everyone uses classes.
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Here is a typical C++ class example:

class Square {
double x, y, w, h; // Private
double area, perimeter; // Private

public: // Everything that follows is public
double getArea() { ... };
double getPerimeter() { ... };
double resize(double newW, double newH) { ... };

}
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classes and header files

For the sake of clarity, it is better to separate the class definition
from its implementation. To that end we use header files. Example:
// File: Point2D.h
class Point2D {

public:
double x, y;
double Norm2();

};

// File: Point2D.cpp
double Point2D::Norm2() {

return x*x + y*y;
}

This makes it easier to separate specification from implementation.
To use the class Point2D you must add #include ”Point2D.h” to
your program.
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inheritance



inheritance: main idea

There is not much difference between a square and a rectangle. Is
there a way to avoid coding the same things twice?

Yes: Inheritance.
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inheritance: copying everything from your parents

class Rectangle {
public:

double x, y, w, h;
double getArea();

};

class Square : public Rectangle {
// All public fields are copied from Rectangle
// All public methods are copied from Rectangle

};

We say that Square is a “child” of Rectangle. Or that Rectangle
is a “parent” of Square.
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inheritance: protected members

What about private fields and methods? Those don’t get copied.
But we can share something within a family by using protected:
class Rectangle {

protected:
double x, y, w, h;

public:
double getArea();

};

class Square : public Rectangle { };

Square will have access to x, y, w, h. But someone who isn’t
part of the family will not have access.
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hiding inheritance

Inheritance can be embraced or denied:

class Shape1 : public Rectangle { ... }; // Recognized
class Shape2 : protected Rectangle { ... }; // Family secret
class Shape3 : private Rectangle { ... }; // Unrecognized

By default, inheritance of classes is private.
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object-oriented programming



object-oriented programming

OOP is a software design paradigm developed in the 1970’s.

Main ideas:

• Construct objects ( = classes)
• Specify their properties ( = fields), responsibilities ( = methods),
and visibility ( = private/public)

• Use dependencies ( = inheritance) to avoid rewriting code

Main goals:

• Separation of concerns ( = team work)
• Encapsulation ( = how I work is not your business).
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example: platform game class diagram
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oop: the good, the bad, and the ugly

• The Good: Fast development, easy teamwork, easy to learn
• The Bad: multithreading, resource management
• The Ugly: ...
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example: violating the liskov substitution principle

• Create a class Ellipse. Create a class Circle.
• A circle “is an” ellipse, therefore Circle inherits from Ellipse.
• Assume that Ellipse has a stretchX method.
• This method is inherited by Circle.
• But if we use stretchX on a Circle, it is no longer a circle...

Bottom line:

An OO-model of a circle should not be
a sort of OO-model of an ellipse
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constructors & destructors



initialisation: constructors

If we want a class to be initialised in some way, we can use a
special method called a constructor.
class Point2D {

double x, y;
public:

Point2D(double newX, double newY); // Constructor
};

Point2D::Point2D (double newX, double newY) {
x = newX;
y = newY;

}

int main() {
Point2D myPoint (27, 35);
...

}
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initialisation: constructors

You can have several constructors, as long as they don’t overlap.
Most useful ones are:

• Default constructor;
• Copy constructor — necessary for complicated classes;
• Move constructor — if you want to move without copying.
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cleaning-up: destructors

A class should clean after itself. The cleaning-up code is taken care
of in a destructor:

class MyStorage {
...
public:

MyStorage( ... ); // Constructor: Opens a file
~MyStorage(); // Destructor: Closes the file

};

Important: Any resources acquired during creation should be freed
upon destruction.
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the rule of 3 (or 0 or 5)

You should use only one of these combinations:

0 No destructor, copy or move constructor, no assignment
operator;

3 Destructor, copy constructor and copy assignment operator;
3 Destructor, move constructor and move assignment operator;
5 Destructor, copy and move constructors, copy and move
assignment operators.

Remember:

Respect the rule of 3 (or 0 or 5).

If you don’t, your program might behave unexpectedly.
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Questions?
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Lab Session
Const, Virtual, and Move Semantics
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