
Introduction to Modern C++
Homework 2 : PRNGs, Monte-Carlo Integration, and Markov Chains

1 Context
In many applications, where an exact solution is not feasible, randomized algorithms can provide fast
approximations. In fact, for most problems, approximate solutions is the best that we can get and thus
randomized algorithms are often the only option available.

A randomized algorithm is an algorithm that has access to a pool of values uniformly distributed
in [0, 1), called “pseudo-random” numbers. The goal of this homework is to build and use two famous
randomized algorithms.

2 Pseudo-Random Number Generators
Let’s start with the beginning: How to generate pseudo-random numbers? This is one common way:
Choose a starting point s0 (called the “seed”) and apply some function F to it:

si+1 ← F (si) (1)

Note that the sequence (si) is completely deterministic and will be the same everytime we compute it,
unless we change s0. Further note that this sequence is completely predictable. But if F is well chosen,
then the si are distributed uniformly over [0, 1).

The program of Appendix A shows how to generate pseudo-random numbers in the range [0, 1), using
for F a standard PRNG algorithm called Mersenne Twister. Test it and make sure that you always get
the same result. Then change the seed to the value 314159 — we will stick to this value for the rest of
this work.

Question 1. It is a good idea to use pseudo-random numbers to generate passwords? Why or why not?

Question 2. How would you generate samples ti that are distributed according to a Gaussian distribution
of mean µ and variance σ?

3 Monte-Carlo Integration
In Lab 2 we saw how to approximate an integral using Riemann’s lemma: Using a subdivision of the
real line into N pieces, and approaching the integral of our function on these intervals by the area of a
rectangle. This works fine for well-behaved, one-dimensional functions. But in practice we often have to
deal with multi-dimensional integrals over complicated domains, and Riemann’s method doesn’t scale
well.

Question 3. Use Riemann’s approach to compute the integral of this function over [0, 1]× [0, 1]:

1C(x, y) =
{

1 if x2 + y2 ≤ 1
0 otherwise

(2)

(Hint: Use Fubini theorem to integrate over x, then y). Take N = 1000 for your computation. How many
sums do you have to perform? What is the error vis-à-vis the expected result? (Hint: Make a drawing.)

1

Question 4. We will now compute the same integral, but Monte-Carlo style: The integral of 1C is the
same thing as the mean of 1C . Implement the following algorithm:

1. S ← 0

2. Repeat N times:

(a) Choose two numbers x and y uniformly at random in [0, 1)
(b) S ← S + 1C(x, y)

3. Output S/N .
Make sure that you understand this algorithm. Take N = 1000 for your computation. How many sums
do you have to perform? What is the error vis-à-vis the expected result?

Question 5. Use a Monte-Carlo algorithm to compute the volume of a 3-dimensional unit sphere (Hint:
x2 + y2 + z2 = 1). Compare your result to the mathematical value 4π/3. Compute the (hyper-)volume of
a 10-dimensional sphere. Compare your result to the mathematical value π5/120.

Question 6. Run your algorithm several times to measure you result’s variance. Don’t forget to change
the seed! (Why?)

3.1 Application: Portfolio evaluation
Consider two stocks A and B, with respective prices SA(t) and SB(t). I own α units of A and β units of
B, so that by total wealth is Wt = αSA(t) + βSB(t). I would like to estimate the probability that my
portfolio drops by more than 10% at horizon T , i.e.

θ = P
(
WT

W0
≤ 0.9

)
. (3)

If we write L the event that WT /W0 ≤ 0.9, then θ = P(L) = E[IL] with

IL(SA, SB) =
{

1 if WT /W0 ≤ 0.9
0 otherwise

(4)

Assume that1

SA(T) = SA(0) exp
(
(µA − σ2

A/2)T + σAB1(T)
)

SB(T) = SB(0) exp
(
(µB − σ2

B/2)T + σBB2(T)
)

where µA, µB , σA, σB are parameters, and B1(T), B2(T) ∼ 1√
T
N (0, 1).

Question 7. Estimate θ using a Monte-Carlo algorithm. Test your code with T = 0.5 years, µA = 0.15,
µB = 0.12, σA = 0.2, σB = 0.18, SA(0) = $100, SB(0) = $75, and α = β = 100. (Hint: You can use the
code provided in Appendix B to generate B1 and B2).

4 Markov Chains
A Markov chain is a process whose future only depends on the present (and not the past). Markov chains
are used in finance and economics to model a variety of different phenomena, including asset prices and
market crashes.

In this section we use Markov chains for bond credit risk modelling, using real-world data from
Standard & Poor’s (January 2001). Over time, bonds are liable to move from one rating category to
another (AAA being the best). This is sometimes referred to as “credit ratings migration”. Rating
agencies produce from historical data a ratings transition matrix such as Table 1. This table show the
probabiltiy of a bond moving from one rating to another during a certain period of time.

In Table 1, the current rating is given by the row: For instance, the probability to become AAA next
year, knowing that I am CCC now, is 0.0015.

1We say that SA (resp. SB) follows a “Geometric Brownian Motion” of drift µA (resp. µB) and volatility σA (resp. σB).

2

Rating AAA AA A BBB BB B CCC Default
AAA 0.9366 0.0583 0.0040 0.0009 0.0002 0 0 0
AA 0.0066 0.9172 0.0694 0.0049 0.0006 0.0009 0.0002 0.0002
A 0.0007 0.0225 0.9176 0.0518 0.0049 0.0020 0.0001 0.0004

BBB 0.0003 0.0026 0.0483 0.8924 0.0444 0.0081 0.0016 0.0023
BB 0.0003 0.0006 0.0044 0.0666 0.8323 0.0746 0.0105 0.0107
B 0 0.0010 0.0032 0.0046 0.0572 0.8362 0.0384 0.0594

CCC 0.0015 0 0.0029 0.0088 0.0191 0.1028 0.6123 0.2526
Default 0 0 0 0 0 0 0 1.0000

Table 1: One-year rating transition probabilities.

Question 9. Write a program that simulates the possible evolution of an AAA-rated bond over 10
years. What is the probability that it gets downgraded to CCC in 10 years time? What is the probability
that the bond remains AAA-rated for 10 consecutive years?

A Hint for Part 1

#include <random >
#include <iostream >

int main() {
int seed = 42; // Seed
std:: mt19937 gen(seed); // Mersenne Twister
std:: uniform_real_distribution <> unif(0, 1); // Uniform distribution

for (int n = 0; n < 10; ++n) {
std::cout << unif(gen) << ’ ’;

}
std::cout << std::endl;

}

B Hint for Part 2

#include <random >
#include <iostream >

int main() {
int seed = 42; // Seed
std:: mt19937 gen(seed); // Mersenne Twister
std:: normal_distribution <> d(0,1); // Normal distribution

std::cout << "Here is a number: " << d(gen) << std::endl;
}

3

