
Introduction to Modern C++
Homework 1 : Black-Scholes formula for basic option pricing

1 Context
In finance, a European call option is a contract which gives the buyer the right (but not the obligation)
to buy some asset at a specified price K and date T .

Let St be the price of the underlying asset at time t. If the call option is exercised at time T , it
provides payoff

CT = max {0, ST −K} (1)

In 1973, Black and Scholes showed that if we know the interest rate r, the variability of the underlying
asset σ, and the time to maturity (T − t) of the option, then we can know everything about this option
pricing. At the same time, their model generates hedge parameters (a.k.a. the “Greeks”) necessary for
effective risk management of option holdings. For this work Scholes received in 1997 the Nobel Prize in
Economics.

This homework is about implementing the Black-Scholes solution in C++, and computing the Greeks.

2 Black-Scholes formula
The price of an option at time t is given by the formula:

c = S × Φ(d1)−K × exp(−r × (T − t))× Φ(d2) (2)

with

d1 = ln(S/K) + (T − t)× (r + σ2/2)
σ
√
T − t

(3)

d2 = d1 − σ
√
T − t (4)

where the function Φ is the cumulative distribution function of the normal distribution, and T and t are
measured in years.

Remember that the standard library provides useful mathematical functions:

• sqrt for the square root;

• exp for the exponential;

• log for the natural logarithm.

Task 1. Create the file blackscholes.cpp containing these lines:
#include <iostream >
#include <cmath >

double option_price(double S, double K, double r, double sigma , double T, double t) {
double c, d1, d2;

// Your code here

return c;

1



}

int main() {
// Nothing for the moment

}

Task 2. Write code to compute d1 and d2 inside the option price function.

Task 3. Assume that you have access a function Φ called Phi. Write code to compute c.

Note: You can use the function Phi provided in Appendix A. To do that simply add its code into your
file.

3 Example
Stock in company C++4EVER is currently trading at S = 50. Consider a call option on C++4EVER
with an exercise price of K = 50 and a time to maturity (T −t) of 6 months. The volatility of C++4EVER
stock has been estimated to be σ = 30% and the current risk-free interest rate for six month borrowing is
r = 10%.

Task 4. Use your program to compute the C++4EVER option price. You should find 5.45325

Recall that to compile your program you can use the following terminal command:
g++ blackscholes.cpp -o homework --std=c++1y

4 The Greeks
In option trading, a number of important partial derivatives of the option price formula appear:

• Delta ∆ = ∂c
∂S

• Gamma Γ = ∂2c
∂S2

• Vega ν = ∂c
∂σ

• Rho ρ = ∂c
∂r

Task 5. Compute analytically Vega and Rho. Note that Φ′(x) = 1√
2π e
− x2

2 .

Task 6. Implement C++ functions Vega and Rho that perform these computations:
double Vega(double S, double K, double r, double sigma , double T, double t) {

// Your code here

}

double Rho(double S, double K, double r, double sigma , double T, double t) {

// Your code here

}

You may use the code provided in Appendix B for Φ′.

Task 7. Test your code on the same example as for the option price. You should find Vega = 13.3046
and Rho = 13.1168

You can compute and implement the Delta and Gamma as well if you like. You can test them on the
example, you should find Delta = 0.633737 and Gamma = 0.0354789.

2



A Code for computing Φ

double Phi(double z) {
double b1 = 0.31938153;
double b2 = -0.356563782;
double b3 = 1.781477937;
double b4 = -1.821255978;
double b5 = 1.330274429;
double p = 0.2316419;
double c2 = 0.3989423;

if (z > 6.0) {
return 1.0;

}

if (z < -6.0) {
return 0.0;

}

double a = fabsl(z);
double t = 1.0/(1.0+a*p);
double b = c2*expl((-z)*(z/2.0));
double n = ((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t;
n = 1.0 - b * n;
if (z < 0.0) {

n = 1.0 - n;
}
return n;

}

B Code for computing Φ′

double PhiPrime(double x) {
return 1.0/ sqrt (2* M_PI)*expl(-x*x/2);

}

3


