
introduction to modern c++
Lecture 4

Rémi Géraud
February 11, 2016

École Normale Supérieure de Paris

Lecture 4
Pointers, References, Functions

2

table of contents

1. C++ Memory Model

2. C++ Pointers

3. C++ References

4. Functions

3

c++ memory model

c++ memory model

When we perform computations, the computer stores our results
somewhere

int x, y, z;
x = 42;
y = 77;
z = -2;

Where? In the computer’s memory (RAM). What’s memory?

5

c++ memory model

The memory is a long list of binders called memory locations.

6

c++ memory model

Memory locations are numbered: The zero-th, the first, second etc.

What is the memory location containing the value of x ?

int x = 42;
std::cout << &x << std::endl;

Important note:

• x is the value of x (= 42)
• &x is the address of x (= the binder’s position).

Note 2: The binder containing x is usually quite random.

7

c++ memory model

The other way around: If you give me an address (= a binder), I can
look into it.

int x = 42;
std::cout << *(&x) << std::endl;

Here I open the binder of x. What does it contain?

Important note:

• If y is an address (= a binder position = ”pointer”)
• Then *y is a value (= the contents of the binder)

8

c++ memory model

Small exercise:

int x = 42;
int y = 73;
std::cout << *(&x + 1) << std::endl;

What happens? Why?

9

c++ pointers

pointers in c++

In C++, a pointer type is defined by adding a star symbol:

int x = 42; // x has type ”integer” and value 42
int* y = &x; // y has type ”pointer to integer”

If you follow, *y = 42.

Pay very close attention with all these * and & floating around!

11

c++ pointers: why?

Why do we use pointers? A typical scenario is as follows:

• You can put a lot of stuff in a binder.
• Instead of moving everything around, making copies,
• You just say “look in binder 4372”.

Less copies = Faster code

Note: We’ll meet a lot the “null pointer”, nullptr.

12

c++ pointers: a word of caution for c programmers

We don’t use C++ pointers the way we use C pointers.

• In fact we try to avoid using them as much as possible
• Abuse of pointers leads to dangerous, hard-to-debug and
hard-to-optimize code

• It is almost always possible to to without pointers...
• ... at least raw pointers.

13

c++ references

c++ references

Less powerful than pointers, but often useful, are references.

A reference is just “another name” for a variable.

15

c++ references

Example:

int a = 42;
int& b = a; // Create alias b of a
b = 73;
std::cout << a << std::endl;

This program prints 73, because a and b are the same thing.

Pay very close attention with all these * and & floating around!

16

pointers and references: short summary

Remember this:

• int x; Declaration of a variable x

• &x “Address of” x = Pointer to x

• *y “Contents of” binder at address y (dereference)

• int* y = &x; y = address of x = pointer to x

• int& y = x; x and y are forever the same thing

Of course the same applies with other types (float, etc.).

You must know these by heart.
There will be questions during the midterm

17

functions

c++ functions

You already met functions in the homework and lab sessions.

A function looks like this:

double myFunction(float a, float b, float c) {
double x;
// Do some stuff
return x;

}

Some vocabulary:

• This is a function declaration
• a, b, and c are called arguments
• x is the return value of myFunction.
• myFunction has return type double

Note: What is the type of myFunction?
19

c++ functions

To use this function,

double myFunction(float a, float b, float c) {
double x;
// Do some stuff
return x;

}

we use the following notation:

myFunction(3, 4, 5);

This is a function call. Example: double x = cos(42);

20

c++ functions

Remark: You can sometimes use type inference (keyword auto):
auto mymax() {

return 3.14; // mymax will return float
}

Beware: Type inference in C++ is not perfect!

21

c++ functions and purity

C++ functions makes it easier to reuse and organise code.

They are basic “building blocks” of programs.

Note: A function is pure when it gives the same output every time it
is called with the same input.

Whenever possible, be pure
It makes your programs more robust and easy to debug

22

impure c++ function

#include <iostream>

int main() {
int x = 0;
myfunction(x);
myfunction(x);

}

void myfunction(int& y) {
y = y + 1;
std::cout << y << std::endl;

}

23

Questions?

24

Lab Session
Headers, Linked Lists, Recursion,

and Dynamic programming

25

	C++ Memory Model
	C++ Pointers
	C++ References
	Functions

