
introduction to modern c++
Lecture 3

Rémi Géraud
February 11, 2016

École Normale Supérieure de Paris



a short reminder

What you learned so far:

• Don’t make mistakes (semicolons, spaces, etc.)
• Don’t use too big or too small numbers
• Don’t mix types (type safety)

2



a short reminder

What you learned so far:

• How to write, compile and run simple programs

int main() {
// Your code

}

• How do translate complicated math as C++ commands

If you don’t know how to do that, catch up!

3



Lecture 3
Control flow and Algorithms

4



table of contents

1. What is control flow?

2. Branching

3. Looping

4. Algorithms

5



what is control flow?



what is control flow?

Computers are good as simple, repetitive tasks.

We already saw how to ask for simple tasks.

Control flow instructions enable us to make them repetitive.

7



what is control flow?

Control flow instructions are essentially of two kinds:

1. Repeat (or “loop”)
2. Branch (or “conditionals”)

Together with simple instructions, this unleashes the full power of
computation.

8



what is control flow?

A geometric interpretation of branching:

9



what is control flow?

A geometric interpretation of looping:

10



what is control flow?

With control flow instructions C++ is a Turing-complete language.

Anything that can be computed,
can in theory be computed with C++

(Church-Turing Hypothesis)

11



branching



branching: conditional statements

The simplest form of branching is provided by the if statement :
if (boolean) {

// Do something
}

Where boolean is a Boolean value.

13



branching: conditional statements

A simple example :

int x;
std::cin >> x;
if (x > 1000) {

std::cout << ”x is larger than 1000” << std::endl;
}
std::cout ”The number is ” << x << std::endl;

14



branching: conditional statements

We can create additional branches;

if (boolean1) {
// Do something

}
else if (boolean2) {

// Do something
}
else {

// Do some other thing
}

Where boolean1 and boolean2 are Boolean values.

15



branching: switch/case statements

There exists a variant, which is trickier to use, but equivalent:

switch (variable) {
case (value1):

// Do something
break;

case (value2):
// Do something
break;

default:
// Do some other thing

}

What do the break statements mean? What happens if we remove
them?

16



looping



loop statements: while, do-while

A while statement repeats the execution of some code :
while (boolean) {

// Do something
}

If boolean is false (or become false), the repetition stops.

18



loop statements: while, do-while

A simple example

int i = 0;
while (i < 100) {

std::cout << ”i = ” << i << std::endl;
i = i + 1;

}
std::cout << ”Finished.” << std::endl;

This prints all numbers 0, 1, ..., 99.

19



loop statements: while, do-while, for

Strictly equivalent is the do-while construction:
int i = 0;

do {
std::cout << ”i = ” << i << std::endl;
i = i + 1;

} while (i < 100);

std::cout << ”Finished.” << std::endl;

Remark: Don’t forget the semi-colon!

20



loop statements: while, do-while, for

If we know in advance the number of repetitions, then it is often
more practical to use a for loop:
for (initial ; condition ; iteration ) {

// Do something
}

An example will make things clearer.

21



loop statements: while, do-while, for

Example:

int i;

for (i = 3 ; i < 20 ; i = i + 4 ) {
std::cout << i << std::endl;

}

This program prints : 3, 7, 11, 15, 19.

22



loop statements: while, do-while, for

Note: Very useful special case:

for (int i = 0 ; i < 10 ; ++i) {
std::cout << i << std::endl;

}

This program prints : 0, ..., 9.
The statement ++i is shorthand for i = i + 1.

23



loop statements: while, do-while, for

Note: Variant for std::vector, std::set and std::array:
std::vector<int> x = {3, 1, 4, 1, 5, 9, 2, 6}

for (int xi : x) {
std::cout << i*i << std::endl;

}

This program prints : 9, 1, 16, 1, 25, 81, 4, 36.

24



algorithms



algorithms

You now know enough to start implementing actual algorithms.

We will start with a silly but typical example (more in the lab) :

The Factorial!

26



algorithms: the factorial

Reminder: If n is a positive integer, then its factorial is denoted n!
and is equal to

n! = 1× 2× 3× · · · × n

For example, 4! = 24.

27



algorithms: the factorial

In C++ this can be easily implemented as follows:

#include <iostream>

int main() {
int n;
int result = 1;
std::cin >> n ;
for (int i = 2 ; i < n ; ++i) {

result = result * i;
}
std::cout << n << ”! = ” << result << std::endl;

}

Note: You can’t compute the factorial of large numbers, why?
Note 2: This program doesn’t check whether n > 0
Note 3: What is the value of 0! ?

28



algorithms: collatz sequence

Challenge: Implement the following algorithm in C++.

1. Input a positive integer n
2. If n is odd then multiply it by three and add one
3. If n is even then divide it by two
4. Repeat steps 2 and 3 until n = 1.

Remark: No one knows if that algorithm always finishes.

29



algorithms: standard library

Teaser: Many useful algorithms are already implemented for you in
the C++ standard library.

In the lab, we’ll see how to use e.g. std::sort for fast sorting.

We don’t need to reinvent the wheel.

30



algorithms: turing’s entscheidungsproblem

Theorem (Turing)

It cannot be determined automatically whether a generic program ter-
minates or not.

Proof.

Assume T(P) returns 0 if P doesn’t terminate, and enters a perpetual
loop otherwise. Consider T(T).

Corollary

Correctness must usually be checked by hand!

31



Questions?

32



Lab Session
Sorting, Numerical integration,

and Angry Birds

33


	What is control flow?
	Branching
	Looping
	Algorithms

